Strong Semismoothness of Eigenvalues of Symmetric Matrices and Its Application to Inverse Eigenvalue Problems
نویسندگان
چکیده
It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions, which implies that the eigenvalues are semismooth functions. Based on a recent result of the authors, it is further proved in this paper that the eigenvalues of a symmetric matrix are strongly semismooth everywhere. As an application, it is demonstrated how this result can be used to analyze the quadratic convergence of Newton’s method for solving inverse eigenvalue problems (IEPs) and generalized IEPs with multiple eigenvalues.
منابع مشابه
Some results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملProperties of Central Symmetric X-Form Matrices
In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.
متن کاملNonsmooth Matrix Valued Functions Defined by Singular Values
A class of matrix valued functions defined by singular values of nonsymmetric matrices are shown to have many properties analogous to matrix valued functions defined by eigenvalues of symmetric matrices. In particular, the (smoothed) matrix valued Fischer-Burmeister function is proved to be strongly semismooth everywhere. This result is also used to show the strong semismoothness of the (smooth...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملThe inverse eigenvalue problem via orthogonal matrices
In this paper we study the inverse eigenvalue problem for symmetric special matrices and introduce sufficient conditions for obtaining nonnegative matrices. We get the HROU algorithm from [1] and introduce some extension of this algorithm. If we have some eigenvectors and associated eigenvalues of a matrix, then by this extension we can find the symmetric matrix that its eigenvalue and eigenvec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 40 شماره
صفحات -
تاریخ انتشار 2002